PGE2 inhibits apical K channels in the CCD through activation of the MAPK pathway.
نویسندگان
چکیده
We used the patch-clamp technique and Western blot analysis to explore the effect of PGE(2) on ROMK-like small-conductance K (SK) channels and Ca(2+)-activated big-conductance K channels (BK) in the cortical collecting duct (CCD). Application of 10 microM PGE(2) inhibited SK and BK channels in the CCD. Moreover, either inhibition of PKC or blocking mitogen-activated protein kinase (MAPK), P38 and ERK, abolished the effect of PGE(2) on SK channels in the CCD. The effect of PGE(2) on SK channels was completely blocked in the presence of SC-51089, a specific EP1 receptor antagonist, and mimicked by application of sulprostone, an agonist for EP1 and EP3 receptors. To determine whether PGE(2) stimulates the phosphorylation of P38 and ERK, we treated mouse CCD cells (M-1) with PGE(2). Application of PGE(2) significantly stimulated the phosphorylation of P38 and ERK within 5 min. The dose-response curve of PGE(2) effect shows that 1, 5, and 10 microM PGE(2) increased the phosphorylation of P38 and ERK by 20-21, 50-80, and 80-100%, respectively. The stimulatory effect of PGE(2) on MAPK phosphorylation was not affected by indomethacin but abolished by inhibition of PKC. This suggests that the effect of PGE(2) on MAPK phosphorylation is PKC dependent. Also, the expression of cyclooxygenase II and PGE(2) concentration in renal cortex and outer medulla was significantly higher in rats fed a K-deficient diet than those on a normal-K diet. We conclude that PGE(2) inhibits SK and BK channels and that there is an effect of PGE(2) on SK channels in the CCD through activation of EP1 receptor and MAPK pathways. Also, high concentrations of PGE(2) induced by K restriction may be partially responsible for increasing MAPK activity during K restriction.
منابع مشابه
Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملGenistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells
Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 293 4 شماره
صفحات -
تاریخ انتشار 2007